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Abstract
Supercomputers are comprising more and more processors and
these processors are increasingly heterogeneous, with differing per-
formance characteristics. The conventional programming models
assume that all nodes run in lockstep. Thus, applications run at the
speed of the least powerful processor. We introduce DesyncFS, a
new programming model based on the block abstraction of tradi-
tional file systems. It virtualizes the performance characteristics of
processors; this allows their heterogeneity to be hidden. We show
that DesyncFS allows cluster throughput to scale with average pro-
cessor throughput instead of being limited by the slowest processor.

1. Introduction
Increasingly, supercomputers are being constructed as clusters
made up of commodity processors, open-source operating systems,
and commodity networking. As of June 2006, 3 of the top 10 and
73% of the top500.org1 supercomputers are considered clusters.

The open standards and loose coupling of clusters encourage
organic construction and heterogeneity. For this reason, supercom-
puters used for HPC applications are becoming increasingly het-
erogeneous. As well, grids interconnecting clusters introduce net-
work heterogeneity and can further increase processor heterogene-
ity. Cluster and grid architectures are good because they reduce
costs and allow greater and more efficient sharing between research
groups.

However, at the same time these architectures create new prob-
lems for many typical HPC applications. This paper looks specif-
ically at single-site clusters and the problem of processor hetero-
geneity. It is possible that some of our ideas can be generalized to
grids, but we want to prove and understand our ideas in the cluster
first.

Many interesting applications exhibit internal data dependen-
cies that require synchronization at many points during execution.

1 A global ranking of unclassified supercomputers, by aggregate flops
throughput, hosted athttp://www.top500.org/.
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Examples include particle dynamics, gas models, wave equations,
Fourier transforms, sorting, cosmology models, chemical reaction
dynamics, and many others. These applications are most impacted
by cluster heterogeneity, because any synchronization point makes
fast nodes stop and wait for slower nodes. Other applications, such
as Monte Carlo simulations, need little or no internal synchroniza-
tion. They are often calledembarrassingly paralleland require lit-
tle system or runtime support to run effectively even on a heteroge-
neous cluster. With heterogeneity, difficulty is caused by the com-
putations that are not embarrassingly parallel, with dependencies
between processors.

In order to make these applications perform better on heteroge-
neous clusters, we need to find some way todesynchronizethem;
that is, to loosen the waits-for requirements imposed on the coop-
erating processors. One major source of such requirements is the
need to read and use intermediate data before it is overwritten. An-
other is the difficulty, given conventional programming models, of
dynamically shifting work away from processors that are falling
behind.

To tackle these problems we introduce the concept of adesyn-
chronizing file system, or DesyncFS. The DesyncFS programming
model has two primary features that address these issues. First, it
manages data and computational progress for the application, so
that the application itself can be stateless. Second, it supports ver-
sioning of that data, so intermediate data can persist even after it
is nominally overwritten. We call DesyncFS a file system, even
though no disk storage is necessarily involved, because it is based
on the fundamental abstraction of file systems: theblock.

Because DesyncFS makes the individual performance of each
processor invisible and irrelevant to the application, we say that it
virtualizes these performance properties: DesyncFS provides the
application with the illusion that it has an arbitrary number of
equally fast processors.

Virtualization is an old and general term in computer systems.
A system virtualizes if it presents an abstract interface that hides
characteristics of underlying resources. Virtualization can occur at
many levels in the system software stack. For example, it can be
implemented at the machine level, where a virtual machine (VM)
emulates the instructions of some physical machine. Or it can be
implemented at the API level, where library routines hide details of
the underlying resources.

Machine virtualization simulates a processor architecture using
a virtual machine monitor (VMM) to implement a VM interface.
Work on this form of virtualization began early in the development
of modern computer systems with seminal work by IBM [1] and
Goldberg [12] [13] on VMMs. Interest in VMMs resurged in the



recent decade with VMWare and Xen [3]. When clusters are run on
virtual nodes, as is already widely the case and will likely increase,
heterogeneity can be exacerbated and even fluctuate dynamically.

Virtualization can also be the construction of a new, abstract
interface where one did not exist before. This form of virtualization
is common in storage systems where many different resources are
collected together under one simplifying interface. For example,
logical disk volume managers.

All kinds of virtualization solve the same general problem. They
add an indirection between system layers to reduce the ability of
change and complexity (entropy) at lower layers to affect higher-
level components. Change can affect higher layers in a number of
ways. It can disrupt performance or even render a system inoper-
able. When used right, virtualization reduces costs by containing
and hiding entropy.

Virtualization is not a new trick for the HPC community. Mes-
sage passing and shared memory interfaces are designed to provide
a kind of virtualization. Programmers of parallel machines became
tired of porting their code to every new architecture. So they devel-
oped standard interfaces to abstract the details of communication
and synchronization. As systems change, this saves tremendous ef-
fort by only requiring the port of one library to a new machine.
All the programs can follow. For example, once the MPI library is
ported, all the MPI programs follow for free.

The processor composition of a large parallel machine is one
specific kind of uncertainty and complexity. The goal of DesyncFS
is to provide an abstraction layer that hides processor heterogeneity
in the same way that MPI, PVM, or OpenMP hide the machine
details of communication and synchronization.

The remainder of this paper introduces the concept of a DesyncFS,
outlines the design, then uses a simple and general HPC benchmark
to evaluate the performance of one implementation, C-DesyncFS.

2. Background and related work
Two classes of research are related to DesyncFS; parallel program-
ming models and parallel file systems. Programming models ab-
stract synchronization and communication while file systems ab-
stract data sharing across time and space.

2.1 Parallel programming models

A parallel programming model is a set of consistent abstractions to
help programmers write portable and efficient programs for par-
allel machines. A model must help the programmer solve three
problems; how to specify parallel threads of execution, how to or-
ganize communication between threads, and how to synchronize
data between threads. Since these are orthogonal to the problems
of sequential programming, models are often implemented as a set
of routines or compiler directives tacked on to a popular sequen-
tial language. There are many parallel programming models. Over
time, several have emerged as the most dominant. These are raw
multitasking, message passing, multithreading, and data parallel.
They differ in how they use abstraction to solve the problems of
parallel execution, communication, and synchronization.

In raw multitasking, there is no runtime independent from the
program and it manages all state. In message passing, all commu-
nication is through messages and no data structures are explicitly
shared, making synchronization implicit in communication. In mul-
tithreading, processes communicate through shared data structures
and these must be explicitly serialized through mechanisms such as
locks or condition variables. In data parallel, the runtime and com-
piler together eliminate the management of data and control syn-
chronization from the program. However, data parallel programs
still have memory state outside the control of the runtime. Finally,
DesyncFS virtualizes all communication and synchronization un-
der one abstraction, file blocks.

state RM MP MT DP DesyncFS
sockets • • ◦ ◦ ◦

files • • • • •

locks • ◦ • ◦ ◦

memory • • • • ◦

Figure 1. virtualization mechanisms for models.
This figure summarizes abstraction forms across raw multitasking (RM),
message passing (MP), multithreading (MT), data parallel (DP), and
DesyncFS. Solid circles indicate that the application interfaces directly
against the state abstraction. Hollow circles indicate that the abstraction is
implicit or managed by the runtime. Dynamic load balancing is particularly
difficult for any model that does not hide memory.

It is possible to accomplish runtime adaptation by building on
top of a message passing layer. However, the solution would not
necessarily be general or reuseable and it would require a lot of
work for just one application.

Adaptive MPI (AMPI) [16] is a library and runtime system for
dynamic load balancing. AMPI is an implementation of the MPI
interface on top of the Charm++ [17] runtime system. Charm++
uses object migration for load balancing. However, Charm++ pro-
grams are platform dependent and cannot migrate across different
architectures. This limits its ability in practice to solve problems
of processor heterogeneity. For this reason, the AMPI approach is
suitable for balancing heterogeneity higher in the stack, at the ap-
plication and problem-domain level.

Google’s MapReduce [6] is another system for virtualizing at
the API level, but goes in a different direction than MPI. It provides
a less general interface, but abstracts more. The MapReduce run-
time partitions the computation, schedules execution, handles hard
failure, and manages communication. The scheduler handles soft
failure by distributing work lazily. The cost of all this abstraction is
a fairly constrained programming model. All MapReduce computa-
tions take a list of key-value pairs as input and transforms these into
a final result value list. The details are described in Dean et al. [6].
MapReduce works well for some data processing applications. For
example, web indexing and data mining. However, MapReduce is
not sufficiently general for HPC applications [18] [6]. DesyncFS
provides a more general interface suitable both for data process-
ing and scientific computing, with no less resource abstraction than
MapReduce.

Mentat [14] is an object-oriented programming system for
medium-grain data-driven computation. However, Mentat lacks a
mechanism for adaptive load balancing. Computation in DesyncFS
is also data driven, but chunk assignments are adjusted to acco-
modate heterogeneity. Like the block address space of DesyncFS,
Jade [20] and Linda [9] provide globally shared data structures.
However, both systems lack a mechanism for dynamic adaptation.
DesyncFS combines data-driven computation with a global address
space and dynamic adaptation.

2.2 Parallel file systems

A file system has two essential properties. First, it allows one-
sided communication. Second, data is addressed through a logical,
shared namespace. Logical means that the namespace abstracts
to hide details of its underlying resource representation. These
two essential properties allow file systems to satisfy their central
purpose of facilitating sharing across time and space (between
different processes).

Some secondary properties are often associated with file sys-
tems, but are less essential. Persistence is one secondary prop-
erty, though some common file systems lack persistence. For ex-
ample, memory file systems or UNIX TmpFS [22]. A hierarchi-



cal namespace is another secondary property. Some systems called
file systems are not hierarchical. For example, the Semantic File
System (SFS [11]) and MogileFS2, the file system used by Live-
Journal.com. Some people claim that flat file systems are properly
called object stores and not file systems, but there is disagreement
on this point.

There have been mountains of research on distributed and par-
allel file systems. It is difficult to know where to start, so we will
discuss some relevant peaks.

Surprisingly to many, NFS [21] continues to be widely used
in HPC environments despite the fact that it has changed little
since 1984, lacks any real security, and has a data consistency
model that is impossible to formalize. This surprising success is
the result of three factors. First, for runtime sharing HPC programs
tend to use message passing or shared memory libraries, not file
systems. File systems are generally used for very coarse granularity
sharing, between jobs. Therefore, the lack of a consistency model
does not matter. Second, environments that want security tend to
use mechanisms outside of the file system. For example, login
control and firewalls. The lack of security in NFS matters less
when security is being enforced elsewhere. Third, NFS is mature,
stable, well-understood, and relatively inexpensive to maintain and
administer. This combination of factors has given the granddaddy
of network file systems surprising longevity.

However, NFS does have drawbacks for HPC. HPC programs
tend to use other abstractions for synchronization, but many do
make heavy use of file systems for other purposes. For example, for
checkpointing and outputting data for visualization. For HPC, the
biggest problem with NFS is its performance and poor scalability.
This problem is not easy to fix because it derives from the protocol
itself. In particular, the NFS protocols couple metadata and data
together and assume they are served by one server. The bottleneck
is knit into the protocol.

The NASD [10] and xFS [2] file system architectures eliminate
the NFS bottleneck by carefully separating control and data. Data
is served by many parallel servers and control is only centralized
when needed, for consistency and to preserve file system semantics.

Lustre3 and PVFS2 [19] are working realizations of the NASD
architecture. In both systems, data servers are decentralized across
nodes of the cluster while the metadata server is centralized. Both
systems go farther than just scaling NFS by providing the POSIX
file system interface and semantics. POSIX semantics are similar
to those traditionally provided by a local UNIX file system. Much
of the engineering challenge of Lustre lies in scaling these seman-
tics [4]. In general, a lot of effort has been put into scaling POSIX
semantics to large clusters. However, it is unclear that the desire
for POSIX has a rational foundation. The POSIX file system inter-
face has strong semantics and there is no compelling evidence that
HPC applications want or need these. It is possible that the interest
in POSIX comes from a desire to standardize on some interface,
any interface. The problem with standardizing on POSIX is that its
semantics are tight and hard to scale.

3. Design
The DesyncFS design is described by its data and execution mod-
els. The data model describes how application data is structured.
The execution model model specifies how data is computed and in
what order.

2 We could not find any formal publications about MogileFS. The main de-
veloper maintains information athttp://www.danga.com/mogilefs/.
3 There are few publications on Lustre. The system is built by Cluster
File Systems, Inc. (CFS) and they manage a website for the project at
http://www.lustre.org.

3.1 Data model

Blocks are the base unit of both addressing and computation. Every
block has a globally-unique address. Each address is a series of
non-negative integer components. The first two components are
special and owned by the system. The first is the file identifier
and the second is the version number. The remaining components
address the data within the file. Each block belongs to the file
specified by the value in its first component. Every block in that
file has the same number of address components.

Every file has a fixed number of components, strictly greater
than two. The first component is its number, but all remaining
components are integer intervals. The dimensionality of a file is
its number of components. The dimensionality of a file’s data is
the number of file components less two, for the file ID and version.
Those components belong to the system and do not address data.

A contiguous rectangular extent of blocks within a file is called
a chunk. Chunks are the unit of work allocation to nodes. The
runtime knows about chunks, but the application does not. The
application only knows about blocks.

Figure 2 illustrates with an example.

Figure 2. DesyncFS data model.
This example shows a file with ID 5, described by the chunk descriptor
(5, [0 2], [0 3]). This file is three-dimensional with one-dimensional data.
Chunk A has descriptor (5, [0 2], [0 2]). Chunk B has descriptor (5, [0 2],
3).

Block values do not change, but may be replaced with updated
versions. Once made, a binding from block address to block value
cannot be modified. With this property, blocks are said to beim-
mutable.

3.2 Execution model

Figure 3. control flow contrast.
This figure contrasts the traditional relationship betweenthe file system and
application with this relationship in DesyncFS.

The DesyncFS execution model is inspired by cellular au-
tomata [24] and dataflow. Computation is achieved by generating
new data blocks. The application defines a stateless compute func-
tion that takes a block address as input. This function reads blocks
as needed and outputs one or more blocks.



In the traditional relationship between application and file sys-
tem, control resides in the application and it calls into the file sys-
tem as needed for storage. This can be described as a push-pull
relationship. The file system is passive and the application actively
pushes and pulls data. A desynchronizing file system inverts this
relationship, making the file system active and the application pas-
sive. Scheduling control resides in the file system and it calls into
the application as needed to compute blocks. Figure 3 illustrates
how DesyncFS inverts the traditional relationship between file sys-
tem and application. This inversion gives the runtime scheduling
control and, with the stateless computation operator, the ability to
transparently balance load.

4. Implementation of C-DesyncFS
Like MPI or Linda, DesyncFS is independent of programming lan-
guage. It has been implemented in Standard ML (SML) and C. This
paper reports on C-DesyncFS, the C implementation. Appendix A
describes the C-DesyncFS application and system interfaces. The
details of the C and SML interfaces differ, but share the general
ideas. As well, the two implementations have the same high-level
system architecture.

4.1 High-level system architecture

DesyncFS comprises a set of processes distributed across proces-
sors and communicating over a network. There are two kinds of
processes; compute nodes and the map. Figure 4 illustrates the gen-
eral architecture.

The map starts a computation, distributes the work, and periodi-
cally adjusts the work distribution based on feedback from compute
nodes. The map is the only centralized component and a DesyncFS
application has only one map.

The map allocates block chunks to nodes. Nodes send lookup
requests to the map to resolve block locations. Chunk mappings
can be safely cached with no cache coherency protocol. Nodes do
this to reduce the lookup load on the map. If there are no load
balanced file, nodes will only communicate with the map at the
beginning of the computation. If a file is load balanced, the amount
of communication increases with the frequency of adaptation.

DesyncFS presents the application with a logically-named,
global block store. The interface provides location transparency.
That is, the application can read any block without knowing where
that block is stored. The same holds for writes. In some cases, the
application programmer may choose to generate extra blocks be-
yond the block it was explicitly directed to compute by the file
system. This can happen if the computation of one block yields
other blocks as a side effect. The file system also provides location
transparency for writes, shipping the block to its remote home if its
surrounding chunk is assigned to another processor.

The nodes do the computation and store and share blocks. Each
node is a process with two threads; the block processor (bproc)
and the block server (bserv). Chunks are assigned to nodes so
that each coupling of block processor and server are responsible
for exactly the same set of blocks. The block processor generates
blocks, scheduling execution and calling the application compute
routine. The block server listens on the network for block requests.
Both threads share a block cache interface so that the processor
can generate and store blocks directly without memory copies or
network transfers.

The runtime uses pipelined prefetching to smooth out hetero-
geneity without any load balancing. At any point, the runtime can
call theappDepList routine for forward or backward dependen-
cies. This functional representation of data dependencies can be
used to prefetch data blocks from fast to slow processors, thereby
eliminating I/O stalls from the compute paths of slow processors.
The current implementation uses this approach and its effects are

Figure 4. DesyncFS system architecture.
This figure shows the high-level architecture of DesyncFS. There is one cen-
tralized map server and many nodes. Each node contains a block processor
(bproc) and block server (bserv). The map distributes work to nodes in the
form of chunks. Nodes form a global block space and share blocks directly
amongst one another. With load balancing, later chunk assignments will be
delayed so that the map can collect information on processor throughputs
to adjust for heterogeneity.

shown in section 5.1. This approach is limited to narrow processor
speed variance. For greater levels of heterogeneity, dynamic adap-
tation must be used to make a structural change in the assignment
of blocks to processors.

4.2 Dynamic adaptation

Adaptation can be automatic or programmers can provide hints to
help. If programmers know the heterogeneity in advance, the job
initialization file can be written to assign chunks to balance load.
If they lack such knowledge, or heterogeneity may be unexpected,
the initialization file can contain a naı̈ve initial mapping and ask the
system to adapt the file after some number of versions.

Dynamic adaptation uses feedback to lazily map chunks to
balance load. Files are the unit of load balancing. That is, every
file is or is not load balanced. If a file is not load balanced, all
of its chunks are assigned to processors when its job begins. If a
file is load balanced, chunks are assigned at the beginning, but for
a number of versions that does not span all of the file’s versions.
Later versions are grouped into chunks when the system has more
information on the relative speeds of its component processors.

Every block request from a remote processor is either a hit or
miss at the target block server. For each of its assigned chunks, the
block server counts all hits and misses from remote processors. If a
block server has many misses and few hits, its colocated processor
is not satisfying its dependencies quickly enough. If a block server
has few misses and many hits, it is doing a good job of satisfying
its dependencies. This miss rate provides information on how well
a processor is satisfying its dependencies.

Periodically, each processor sends the map server a count of
the hits and misses associated with each of its chunks. The map
server uses this information to rebalance blocks across chunks. The
current map implementation uses a simple recursive bisection on
the miss rate for load balancing.

The map processor will send out new chunk mappings when one
of two events happens. First, if it detects that some processor will
soon exhaust its allocated chunks and need more work. The map
will detect this because it receives periodic updates from each node
on that nodes hit and miss count for each chunk and current version
position in each chunk. Second, if a node requests the mapping of
a block that has not been allocated to a chunk.



4.3 Crash recovery

How DesyncFS handles processor heterogeneity is a focus of this
paper. We will explain crash recovery briefly, but not explore it
deeply.

Crash recovery is easier for DesyncFS than many other systems.
There are two reasons for this. First, DesyncFS only runs deter-
ministic computations. This excludes interactive computer games,
but does not limit its applicability for HPC. Methods for simulat-
ing randomness with pseudorandomness are well-established. Sec-
ond, blocks are immutable. Together, these two properties mean
that failure detection need not be perfect. If a processor is assumed
to have crashed but was just slow and rejoins the computation, the
worst that can happen is that there are exact duplicates for some
blocks. Crash recovery is handled through a mix of replication and
reexecution. The job initialization file specifies the period of repli-
cation. A crash loses blocks and these blocks are reconstructed
through reexecution from the checkpoints established by replica-
tion.

5. Evaluation
This section evaluates the DesyncFS approach by comparing C-
DesyncFS with OpenMPI [8] on a simple, but general HPC bench-
mark.

The simple benchmark is an equation solver based on Jacobi
iteration, called the solver benchmark. The MPI implementation
is adapted from the code described in Gropp et al. [15]. This
benchmark is interesting because it it simple and its pattern of
parallelization is shared by a large number of numerical programs
and more complicated PDEs [5] [7].

The experiments were run on the University of Utah Emu-
lab [23] cluster, using up to 81 of the nodes. Each node has an
850MHz single core PentiumIII processor with a 256KB cache,
256MB memory, and they are connected by flat, switched 100Mbps
ethernet. All nodes run Linux 2.4.20 with OpenMPI version 1.1.3.
All experiments were run on this cluster. The homogeneity of the
nodes allowed us to isolate and vary processor heterogeneity. Pro-
cessor heterogeneity is emulated by timing the critical compute re-
gions and stalling computation by a multiplier of the compute time
at the end of these regions. The laggard factor term used in this sec-
tion is equal to one plus this multiplier. For example, if there is no
stall, the laggard factor is one. If there is a stall equal to the com-
pute time, then the laggard factor is two. The experiments vary the
laggard factor to measure the effects of varying heterogeneity.

Note that OpenMPI has had more time and resources for tuning
than C-DesyncFS. C-DesyncFS has been built and tuned by one
programmer over a period of just over one year. OpenMPI is built
by a team of programmers and the version used in our experiments
is a product of several years’ effort and tuning. Therefore, it is
possible that some of the performance gap between the two systems
is not fundamental, but due to the greater resources applied to the
development of OpenMPI.

The experiments are in three groups. In section 5.1, we run on
a homogeneous cluster where all processors run at the same rate
and all chunks are of uniform size. This investigates the base cost
of virtualization across increasing scale. In section 5.2, we run on
a heterogeneous cluster, varying the size and shapes of the chunks.
This investigates how performance varies when chunks are varied
and their size is proportional to processor throughput. In section 5.3
we run on a heterogeneous cluster and evaluate how dynamic load
balancing can improve application performance.

5.1 Uniform chunks

DesyncFS virtualizes more than message passing and therefore
adds runtime overhead that does not pay off when the system is

homogeneous. To investigate the extent of this overhead, we ran
an experiment with homogeneity and uniform chunks. Figure 5(a)
shows the result over an increasing number of nodes. The ratio of
C-DesyncFS to OpenMPI compute time varies little from one node
to 81 nodes. The ratio is highest at 9 nodes, with C-DesyncFS tak-
ing 13.3% longer. The ratio is lowest at 81 nodes, with C-DesyncFS
taking 11.1% longer. This provides an upper bound on the cost of
the increased virtualization, for this workload, but it is not clear
how much lower this cost can be pushed with better implementa-
tion. It is not clear how much of the C-DesyncFS overhead is due
to fundamental inefficiencies from the higher levels of abstraction
or if OpenMPI is just a tighter implementation. Regardless, our C-
DesyncFS implementation costs about 10% more than OpenMPI
when there is no heterogeneity.

Increased heterogeneity will reduce the performance of both
message passing and DesyncFS, unless DesyncFS load balances
to correct the allocation of work. Figures 5(b) and 5(c) show the
results of experiments with processor heterogeneity, but uniform
C-DesyncFS chunk sizes. The chunk sizes are uniform at four
chunks per processor. Figure 5(b) varies the speed of only one
of the 16 processors. The ratio of C-DesyncFS to OpenMPI drops
monotonically from 1.10 at homogeneity (a laggard factor of one)
to 0.71 at a laggard factor of eight. Figure 5(c) varies the speed
of 15 of the 16 processors. The ratio of C-DesyncFS to OpenMPI
drops monotonically from 1.08 at homogeneity (one across all 15
laggards) to 0.76 when all the laggards have a factor of eight. These
two cases are for extreme cases of heterogeneity at opposite ends
of the spectrum. In the first case, one increasingly slow procesor.
In the second case, one increasingly fast processor. Both OpenMPI
and C-DesyncFS take longer, but C-DesyncFS performs better with
increasing heterogeneity. This is due to block prefetching. The
block dependency callback gives the file system information to
prefetch blocks from fast nodes to slow nodes in the background.
This reduces the likelihood of a slow node stalling on network I/O
waiting for a block from a fast node, helping the slow processors.

5.2 Nonuniform chunks

Figure 6 shows four different chunk mappings; (i) to (iv) and the
performance under these different mappings. The benchmark is ex-
actly the same as for the results shown in figures 5(b) and 5(c).
However, the cluster is more heterogeneous than in those experi-
ments. Instead of only having slow and fast processors, ten proces-
sors have laggard factor two, two nodes have laggard factor one,
and the remaining four nodes have laggard factor four.

This replicates the kind of heterogeneity we would expect to see
in an organically constructed cluster; a few slow old processors, a
few fast ones, and the majority in between.

Note how performance is flat across mappings (ii) to (iv) that
preserve area to throughput. In each of these, chunks are assignedto
processors so that chunk area is proportionate to processor through-
put. The four slowest processors get the small rectangles, the two
fastest processors get the big rectangles, and the remaining ten pro-
cessors get the squares. The bar graph shows that the chunk map-
ping does not affect throughput. This is good news because it means
that a load balancer can assign chunk sizes based on induced pro-
cessor throughputs without worrying too much about the details of
the assignment topology.

The difference between C-DesyncFS and OpenMPI on mapping
(i) is due to the prefetching effect, described above in 5.1. The
difference from C-DesyncFS on the uniform mapping of (i) to
C-DesyncFS on the nonuniform mappings of (ii) to (iv), shows
how performance improves by allocating blocks to processors in
proportion to their throughput.
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Figure 5. solver benchmark, C-DesyncFS uniform chunks.
These graphs compare the performance of OpenMPI against C-DesyncFS with uniform chunks. All three figures are solver with 16M points per node. C-
DesyncFS runs with 4 blocks per chunk. Figure (a) runs for 200iterations across varying cluster size, while (b) and (c) run for 50 iterations on a cluster of 16
nodes. Figures (b) and (c) show the effects of varying the laggard slowness. Figure (a) has only one laggard while (b) has 15 laggards.
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Figure 7. solver benchmark, dynamic chunks for load balancing.
This figure shows the effect of a rechunking on program throughput. There is one slow node with a laggard factor of four. Theslow processor (labeled 6 in
(b) and highlighted in (a)) has a miss rate of 73.9 before rechunking. The numbers in the left chunk map of (a) are the miss rates before rechunking. The right
chunk map of (a) shows the shape of the chunks after rechunkingunder these miss rates. The left chunk map of figure (b) names the processors with numbers.
The area of the circles around each processor corresponds tothe throughput of that processor before rechunking. Likewise, the area of each circle in the left
mapping of (b) corresponds to the throughput of each processor after rechunking. Figure (c) shows the changed throughputper processor of figure (b) in bar
graph form.

5.3 Dynamic adaptation

The user may not know the exact heterogeneity of the machine
they are using. In these cases, DesyncFS adapts the computation to
the machine for higher throughput. The mechanism for achieving
dynamic load balancing is calledrechunking.

Figure 7 shows how a rechunking can improve application per-
formance. The experiment runs the solver for 300 iterations on 16
nodes where one of the nodes is slow with a laggard factor of 4.
The initial layout is näıve. The computation is rechunked once, in
the middle, after 150 versions. The first 150 versions take 360s and
the final 150 versions take 209s. Therefore, before rechunking, the
computation runs at 105 blocks per second and after rechunking, it
runs at 180 blocks per second. The rechunking increases through-
put by approximately 70%.

The rechunking is agnostic to the underlying cause of the perfor-
mance imbalance. In fact, the solver benchmark has heterogeneity
at the application-level. The data space is flat with boundaries and
some blocks need more communication for computation than other
blocks. In particular, a corner block needs only two blocks, other
edge blocks need only three blocks, and interior blocks need four
blocks. A toriodal surface would eliminate this, but often flat sur-
faces represent something real. Figure 7(a) shows how the rechunk-
ing adapts for both network and processor heterogeneity. The cor-
ner chunks grow because their processors read and compute less.
The rechunking balances for both network and processor hetero-
geneity.
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Figure 6. solver, C-DesyncFS nonuniform chunks
This figure shows how performance varies from uniform to nonuniform
chunks and for nonuniform chunk mappings of different shapes. Figure (i)
shows a uniform chunk allocation. Figures (ii) – (iv) show allocations that
preserve area to processor throughput, but with different layouts. These re-
sults show how balancing load to throughput increases aggregate through-
put under heterogeneity.

6. Conclusions
This paper has introduced desynchronizing file systems, a new
abstraction to virtualize processors for high-performance compu-
tation on heterogeneous machines. Virtualized processors protect
synchronization from slow processors. DesyncFS uses immutable
block versioning and stateless operators to give the runtime flexi-
bility to transparently adapt computation.

Our experiments with C-DesyncFS and OpenMPI show that C-
DesyncFS adds about 10% overhead across various cluster sizes.
With processor heterogeneity, C-DesyncFS performance exceeds
OpenMPI, even with näıve chunk allocations. For example, with
one slow processor with a laggard factor of four, C-DesyncFS
completes the solver benchmark 25% faster. This is due to the
runtime’s use of dependency information for prefetching. With
dynamic load balancing, C-DesyncFS can pull much farther ahead.

A. DesyncFS interfaces
A.1 DesyncFS API

C-DesyncFS is implemented as a runtime library statically linked
with the application. The interface is small, only six routines. Fig-
ure 9 describes the routines in C. The application calls these rou-
tines.

desynchBlockMake.To eliminate memory copies between the
file system and application, data is shared by passing pointers rather
than copying buffers. Allocating and freeing memory in the same
component is a pragmatism of multimodule programming that sim-
plifies memory management. For this reason,desynchBlockMake

is a simple block factory that wraps heap malloc to keep the details
of memory management contained within the C-DesyncFS library.

struct range {
int max;
int min;

};
typedef struct chunkdesc {

int numdims;
struct range *dims;

} chunkdesc;
typedef struct blockaddr {

int numdims;
int *dims;

} blockaddr;

Figure 8. DesyncFS interface types, in C.
This figure lists the types that describe chunks and block addresses, used in
figures 9 and 10.

typedef void * rd_handle;
void * desynchBlockMake (size_t blocksize);
int desynchBlockExists (const blockaddr *baddr);
rd_handle desynchBlockRead (const blockaddr *baddr,

const void **bufp, size_t *lenp);
void desynchBlockWrite (const blockaddr *baddr,

void *data, size_t len);
int desynchBlockMostRecent (const blockaddr *baddr1,

blockaddr *baddr2);
void desynchBlockFree (rd_handle dp);

Figure 9. C-DesyncFS system call prototypes.
These are the routines used by the application to create and share data.

The application can read and write to any location inside the re-
turned block buffer.

desynchBlockExists.This routine checks if a block exists. If
the block does, then the routine returns true (1), otherwise false
(0). Block existence can also be checked withdesynchBlockRead

but that routine may fetch the block remotely. This routine will not
fetch and is therefore guaranteed to be more lightweight for simple
existence checking.

desynchBlockRead.This routine reads a block value. Thebufp
and lenp are both out parameters. The block value pointer is
assigned intobufp and the length is assigned intolenp. The
routine returns a handle of opaque typerd handle. This handle
is later used to free the block.

desynchBlockWrite. This routine binds a block address to a
block value. Thedata parameter points to the block value and must
be a buffer returned bydesynchBlockMake.

desynchBlockMostRecent.This routine checks on the most
recent version of a block. The first parameter,baddr1 contains
the address of any block. The second parameter,baddr2 is an out
parameter containing the address of the most recent version of this
block that exists. The return parameter is true (1) if some version
of this block exists. Otherwise, it is false (0).

desynchBlockFree.This routine frees a block reference. This
only decrements the number of references. The block will only
be unlinked from the file system and its memory freed when two
conditions are satisfied. First, all of its forward dependencies exist.
Second, it has no references.

A.2 Application interface

The file system calls into the application for information to make
scheduling decisions and for computation services. There are only
five callbacks; one to compute forward and backward block depen-
dencies, another to compute block values, and the final three work
together to form an iterator. All these routines are implemented by
the application. Figure 10 describes the routines in C.



typedef struct baddrslist {
int num;
int maxnum;
blockaddr *baddrs;

} baddrslist;
int appDepList (const blockaddr *baddr,

const chunkdesc *file, baddrslist *list, int dir);
void appCompute(const blockaddr *baddr,

const chunkdesc *file);
void *appIterInit(const chunkdesc *chunk);
int appIterNext (void *iter, blockaddr *baddr);
void appIterDone (void *iter);

Figure 10. C-DesyncFS application callback prototypes.
These are the routines the runtime calls to organize and schedule execution.
Together, these routines form the application.

appDepList. For a given block and containing file, this routine
returns a list of block dependencies. It returns either forward or
backward dependencies. If forward, it returns the list of blocks
depending on this block. If backward, it returns the list of blocks
this block depends on.

There can be insufficient information to compute the block
dependencies. This occurs if the dependencies are dynamic and a
needed block value does not yet exist. In such a case the function
returns false, otherwise true.

There are cases where the application uses the size of the file to
treat blocks differently. For example, boundary conditions. For this
reason, the file chunk descriptor,file, is one of the in-parameters.

appCompute. For a given block, this routine takes a block
address and attempts to compute its value. The routine takes the
file chunk descriptor for its second parameter for the same reason
asappDepList. Like dependencies, computations can vary based
on the file shape. The computation on an edge of the file may differ
from an internal computation.

The compute and dependency functions both need knowledge
about the data dependencies; the compute function to read or write
the data to fulfill the dependencies and the dependency function to
return the block addresses.

appIterInit. This is the first of the three routines that form
the chunk iterator. This iterator follows the style of the C iterator
idiom. For a given block, this routine takes a chunk descriptor and
returns an opaque iterator. This can point to state initialized by the
application, given the chunk value.

appIterNext. This takes the iterator state and returns false (0)
if iteration is complete. Otherwise, it returns true (1) and the next
chunk address in the second parameter. The application modi-
fies the iterator’s internal cursor representation to move it forward
through the chunk space.

appIterDone. The system calls this routine when it is finished
using the iterator. The application cleans up any allocated memory.
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