A New Instructional Operating System

David A. Holland, Ada T. Lim,' and Margo |. Seltzer
Harvard University
Cambridge, MA 02138
{dholland,ada,margo} @eecs.harvard.edu

Abstract

This paper presents a new instructional operating sys-
tem, OS/161, and simulated execution environment,
System/161, for use in teaching an introductory under-
graduate operating systems course. We describe the
new system, the assignments used in our course, and
our experience teaching using the new system.

1 Introduction

Traditionally, undergraduate classes in operating sys-
tems are taught using special-purpose instructional
OSes. These systems are meant to be simple and easily
comprehensible; they have pieces intentionally left out
as exercises for students.

Several instructional OSes of various types have been
written. They seem to have a working lifetime of around
ten years and then become dated, due both to changes
in the OS community and to changing expectations and
prior knowledge bases of students.

We present a new instructional OS, called OS/161, and
accompanying platform, called System/161. Our goals
in its development were to (1) provide a realistic exe-
cution environment; (2) facilitate debugging; (3) retain
the simplicity and assignment-oriented structure neces-
sary for course use; (4) help to familiarize students with
the structure and layout of real OSes; (5) have the com-
pleted OS at the end of the course be capable of running
real, if small-scale, user applications; and (6) provide a
cleanly written and robust code base.

In the remainder of this paper, we discuss other teach-

Also University of New South Wales.

ing OSes and how they relate to OS/161, along with
an outline of why we do not believe in using produc-
tion OSes for teaching; then we provide an overview of
0S/161 and System/161 from an instructional perspec-
tive. Following that, we discuss our course structure and
assignments, and our experience teaching OS/161 this
past year (2001). Finally, we conclude with an analysis
of the extent to which we met our goals.

2 Other operating systems

The last new full-scale instructional OS was Nachos [1],
which appeared circa 1993. Nachos has an unconven-
tional architecture: the operating system kernel and a
machine simulator are compiled into a single executable,
which then runs as an ordinary process on some “host”
operating system. User-level processes run in Nachos
are run in the machine simulator, but the Nachos ker-
nel runs on the host system’s native hardware. We refer
to this design as “mixed mode”.

In some ways it is quite clever: it means the Nachos ker-
nel can be run in a standard debugger. It also means
Nachos does not need to include its own implementa-
tions of standard C functions, such as printf or strcpy,
because the Nachos kernel is linked to the host OS’s
standard C library.

There are, however, some disadvantages to mixed mode.
The machine simulator is for a fixed processor type, a
MIPS 12000 running in little-endian mode. The host
machine may be anything, which today means that it is
not a MIPS r2000. It might not even be little-endian.
This means that, depending on the choice of host plat-
form, data sizes and representations may not be the
same in the Nachos kernel and in Nachos user-level pro-
grams. This causes a great deal of confusion and op-
portunity for mysterious and unrealistic bugs. Further-
more, because structure sizes may not be preserved, it is
difficult to create a fully functional system call interface.

Nachos has some additional related drawbacks: first,
because the kernel does not appear in the simulated ma-
chine’s RAM, it is not limited by memory constraints.

This means that the size of kernel data structures
does not significantly affect system performance, which
makes the size/space tradeoffs for many design decisions
unrealistic. And second, perhaps worst of all, all inter-
facing to the machine simulator and simulated hardware
devices takes place via C++ objects. This means stu-
dents receive no exposure to the way real hardware is
actually accessed, even though that is a significant as-
pect of kernel programming.

For teaching, a certain amount of realism is desirable.
Too much realism, however, becomes both too compli-
cated and, sometimes, realistically painful. We take the
position that methods and mechanisms should be real-
istic, but details should be simplified: the System/161
hardware is accessed the way real hardware is, but the
devices themselves are simple and easy to work with. By
contrast, handling real devices, especially on 1386 plat-
forms, involves a large collection of complicated device
drivers, making a system large and less readily compre-
hensible than it might otherwise be.

Recently Nachos has been modified to run as a native
kernel on top of SimOS [4]. This alleviates many of the
problems with mixed mode described above. SimOS
is a MIPS machine simulator similar to System/161;
however, SimOS simulates real hardware and can in fact
support real OSes like Irix, and the modified Nachos
must accomodate this.

Minix [5] is often used as an instructional OS. It can be
run on real hardware, or on an i386 simulator such as
Bochs [3]. It thus offers a substantial, perhaps excessive,
degree of realism.

Another new teaching OS is Topsy [2], which runs na-
tively on MIPS simulators such as SimOS. However, it
includes no native support for either paged virtual mem-
ory or file system operations; it does not appear to be
intended to illustrate the design and implementation of
a complete system but rather to offer a platform for
teaching concurrency and hardware manipulation.

Other past instructional OSes that appear to be more
or less obsolete include Xinu, from Purdue circa 1984,
and TOY, developed in 1973.

The ultimate in realism is to use a real production OS.
This has drawbacks, however, beyond the issue of de-
vice drivers: real OSes are immensely large and com-
plicated, and are full of complexities and constructs for
coping with real-world issues that have little instruc-
tional value. Furthermore, real OSes are already fully
functional, so students do not get to design or imple-
ment major subsystems or even minor interesting parts.
Finally, production OSes are usually too slow for simu-
lators; running them on bare hardware makes debugging
much more difficult and requires making hardware avail-

able to students (often problematic). We feel that for
these reasons, introductory OS classes involving kernel
programming at all should avoid production OSes.

3 System/161

We came to the conclusion that computers are now fast
enough that, even on the chronically overloaded under-
graduate computer facility, it is practical to use a com-
pletely simulated platform for teaching the operating
systems class.

We thus created a simulated hardware platform, Sys-
tem/161. System/161 is extremely simple: the first
and foremost design goal was to provide the necessary
functionality without complicating the operating sys-
tems running on it. Thus, it has a straightforward bus
architecture, into which simulated devices, supporting
disks, serial ports, timer/clock, and random generation,
can be inserted. These devices are accessed via reg-
isters in the same way real devices would be. (There
is, however, no DMA; instead some of the devices have
memory-mapped transfer buffers.) The devices are min-
imalistic: even the most complex one has only six regis-
ters. The explicit intent was that an experienced kernel
programmer would be able to write a complete set of
device drivers in an afternoon.

System/161 also contains a complete integer MIPS
r2000 processor simulation running in big-endian mode.
The code is structured to support multiple processor
types. Support for several other processors has been
proposed and/or begun, but not completed. Floating-
point support is not planned.

System/161 is written in portable C; it was developed
under NetBSD on 1386 hardware and used by students
under Digital Unix on Alpha hardware. It consists
of approximately 9,000 lines of code. On a 550MHz
Pentium-III, the most recent version manages a little
over 3MHz running cpu-intensive tasks. (This could un-
doubtedly be improved.) While not ideal, such perfor-
mance is acceptable, as OS code is rarely cpu-intensive.

Perhaps the most significant feature of System/161,
however, is the debugging support. System/161 con-
tains its own remote gdb hooks, so any kernel loaded
into System/161 can be debugged with gdb without
needing support of any kind from that kernel. Even bet-
ter, the debugging is completely transparent and does
not affect the simulation’s timing. It is thus possible to
trace right into the context switch, for instance, or to
tackle timing-related problems in the debugger.

By contrast, remote gdb to a real kernel running on real
hardware requires placing the debugging hooks within
the kernel itself. This unavoidably complicates the ker-
nel and affects its operation; furthermore, it is generally

impossible to debug low-level parts of the kernel. While
debugging a “mixed mode” system like Nachos does not
require the kernel’s cooperation, it still affects timing.
Also, in a mixed mode environment, the debugger de-
bugs the machine simulator as well as the kernel, which
is generally not illuminating and sometimes confusing.

None of these features require the use of OS/161; Sys-
tem/161 is an independent entity. In fact, an unex-
pected side benefit of building it has been that it offers
a fairly nice platform for quick and dirty kernel hacking.
It will load and run any ELF? format kernel compiled
for the right processor type.

0S/161 is not necessarily tied to System/161 either;
there is no barrier, besides complexity we did not wish
to introduce, to porting it to other platforms, simu-
lated or real. However, OS/161 and System/161 were
designed together and are intended to be used together.

4 0S/161

0S/161 is intended to feel like a real OS, while still be-
ing simple enough to hand out to undergraduates. It
is intentionally similar to BSD Unix in general organi-
zation and structure. It comes with a dozen or so of
the basic Unix shell commands and is laid out to use
a Unix-like system call interface. It includes a skeleton
standard library (to be extended in the future), which
is also Unix-like. The advantage of this is that simple
code will compile on Unix, Linux, BSD, etc. as read-
ily as it will on OS/161. Thus, students can test and
debug user-level code elsewhere before running it under
0S/161.

Since OS/161 runs in a completely simulated environ-
ment, rather than mixed mode, all the interrupt and
exception handling mechanisms work exactly as they
would on real hardware. We provide most of the code
that implements these things; we do not require stu-
dents to write assembly code, although we do encourage
them to read it. We take only one shortcut: we do not
implement the confusing MIPS cache flush code, as we
know System/161 does not include a cache simulation.

Similarly, the OS/161 kernel must include implementa-
tions of all the C library functions it uses. We provide
these (including printf); much of this code is shared
with the user-level C library.

In a teaching OS, the file system serves two quite sepa-
rate purposes: it serves as both a subject of instruction
and as a repository for materials (executable programs
and data) used in the course of operation. If these pur-
poses are made to overlap, defects in the students’ file
systems can cause the operational functions to fail. This

2Embedding and Linking Format, a widely used file for-
mat for executables.

is frustrating for the students and a source of wasted
time. Thus, while it is desirable for the students to be
able to use their file systems for the operational func-
tions for testing, it is not desirable to require such use.

Thus we provide two file systems in OS/161: one is a
“real” file system that sits on top of a simulated disk
device and accesses blocks from it. The other is the
“emulator” file system, emufs, which works through a
special System/161 device and accesses the file system
of the host OS. The former is used for instruction; the
latter is used, under ordinary circumstances, for opera-
tion. A side benefit of this organization is that there is
no need to copy the OS/161 user programs onto a disk
image file after every recompile.

In order to make these two file system types func-
tion together, and to allow students to add additional
file system types if they so desire, we provide a VFS
(virtual file system) layer. The VFS layer uses a
device:path syntax, like AmigaDOS or MS-DOS, so
as to avoid the complications associated with mount
points; apart from splitting off the device name, if any,
it does no interpretation of paths or filenames. (Usage of
the path “1hd0O:my/files/test.txt” causes the string
“my /files/test.txt” to be passed to the file system as-
sociated with 1hd0, the first simulated disk.) The VFS
layer code does not require student attention in any of
our assignments, although the students are encouraged
to understand how it works.

Having the separate file system for operational use also
means that general-purpose file system activities are
possible even before students tackle the instructional
file system. As much as possible, we have structured
the system and assignments so that they may be com-
pleted in any order.

For instance, to avoid requiring the virtual memory
assignment to come first, we provide a simpleminded
virtual memory system, which we call “dumbvm”, de-
scribed below. This provides just barely enough func-
tionality to allow user-level code to run.

Other functionality included in the base OS/161 ker-
nel is kept to a minimum, in order to try to minimize
the amount of unfamiliar code students have to absorb.
It includes basic thread and context switch code, basic
support for threads to block and be awakened, device
drivers, console I/O routines, code to read ELF exe-
cutables, some assorted test code, and a skeleton in-
structional file system for the file system assignment.
The base kernel is 11,000 lines of code with another
8,000 lines of comments; the user-level tools and test
programs add another 7,000 lines of code.

5 Assignments

Our course is set up with five assignments and a pre-
liminary exercise. (The preliminary exercise consists of
reading portions of the code and answering some ques-
tions about it, building and running a kernel, and try-
ing out the debugger.) Starting with assignment 2, the
students work in pairs. The organization and content
derive from the original Nachos assignments; in the past
we used Nachos in our course and we intentionally pre-
served the assignment structure.

Assignment 1 covers synchronization and concurrent
programming. The students are given a BSD-like
sleep/wakeup interface to the thread system and a
semaphore implementation that uses it. They must im-
plement locks and condition variables (with Mesa se-
mantics), and then use these synchronization primitives
to implement concurrent solutions to three or four syn-
chronization problems. We change the problems every
year, but typically one is a signalling problem of some
kind and another is a producer-consumer problem. This
coding takes place within the OS/161 kernel. In order
to make this interesting, we make the kernel fully pre-
emptible.

Assignment 2 covers processes and system calls. The
students implement a dozen or so basic system calls,
complete with proper argument handling. This re-
quires implementing file handles, as well as the argu-
ment handling associated with execv, process creation
with fork, and waiting for processes to exit with a sub-
set of waitpid. The students are also responsible for
arranging that processes get killed correctly upon fatal
faults, and they implement a simple shell.

They then implement two different schedulers and do
some simple system performance analysis based on
choice of scheduler and tuning of scheduler parameters.

Assignment 3 involves writing a VM (virtual memory)
system. The “dumbvm” hack is turned off for this as-
signment and students get to write nearly everything
from scratch. We require support for swapping and
for malloc at user level; however, we do not require
memory-mapped files or copy-on-write shared regions,
although students have implemented both these things
in past years. We then ask students to tune their VM
systems and report their performance measurements.

Since the students are writing even the most fundamen-
tal parts of the VM system, it is important that the
system not expose any avoidable rough edges. Thus the
base system is arranged so that VM initialization comes
after console initialization, so debug messages can be
printed. We provide a framework for grabbing memory
during bootup and before VM initialization. Some stu-
dents find this distasteful and rip it out, but many do

not, and we believe it worthwhile.

In assignment 4, the students extend the skeleton file
system we provide. What we provide is primitive: it
does not support directories, files larger than about 72k,
multiple concurrent processes, or a disk cache. The stu-
dents are supposed to remove these restrictions.

Additionally, they must implement a half-dozen file
system-related system calls, and write up performance
analysis of their disk cache.

The original Nachos assignment 5 involved implement-
ing a simple network protocol; in our course over the
years we have used that assignment and other similar
ones. However, networking is in many ways its own
field; in our department it has its own class, and so
we decided instead to open up the assignment to be
a student-selected project. We provide a list of sev-
eral dozen suggestions; they must do either one large
project (for example, a file system integrity checker) or
two smaller projects (such as implementing pipes).

Unfortunately this past year we did not have simu-
lated network hardware ready in time to allow network-
related assignment 5 projects, but that will not be a
problem in the future.

6 Experience

One thing we discovered this past year is that our teach-
ing of synchronization concentrated too much on high-
level synchronization primitives and not enough on the
realities of synchronizing with interrupt handlers by dis-
abling interrupts. While the high-level primitives are
preferable in various ways, in real life one needs to deal
with interrupts from time to time, and disabling inter-
rupts is not functionally equivalent to any of the conven-
tional primitives. We found that our students tended to
get into trouble using interrupt synchronization when
it proved necessary in certain contexts, such as the VM
system. So we are considering adding a synchronization
problem that must be solved by disabling interrupts.

We also found that our original implementation of
“dumbvm” was too dumb. The original dumbvm had
no concept of processes, address spaces, or valid address
ranges: whenever a page fault occurred in user space,
no matter where the fault was, it grabbed a blank page
of memory and mapped it in using the MIPS memory
management unit. When it ran out of slots in the MMU,
it gave up. It could be made to clear everything out and
start over, but even then it never reused pages.

This allowed only one process at a time. In order to
allow running user-level code that used fork and exec,
we contrived a hack: fork would do nothing and just
return and claim to be the child process, so the parent
process would evaporate. While this worked, it proved

undesirable: it postponed implementation of the fork
system call itself to the VM assignment, which helped
make the VM assignment too long. Furthermore, be-
cause it did no bounds checking, it made it harder than
necessary to test anything involving user space, and ren-
dered certain kinds of failures invisible. Worse, because
it never reused memory, even for in-kernel allocations, it
masked a wide variety of student implementation bugs
in assignment 2 code that then surfaced later.

These problems proved serious. The new dumbvm im-
plementation, that we will use this coming year and pre-
sumably thereafter, can handle more than one process
and keeps track of the legal addresses in each, although
it is still heavily restricted and limited by the number
of slots in the MMU.

In the orignal OS/161, the implementation of malloc
and free in the kernel were essentially stubs that called
into dumbvm to grab pages. They never reused mem-
ory either. Part of the VM assignment (assignment 3)
was to implement the kernel versions of malloc and
free. This was a serious mistake. Since many parts of
the kernel use malloc, bugs therein would cause bizarre
crashes, the kind that undergraduates generally do not
have the experience to deal with effectively. Further-
more, the various bugs in students’ assignment 2 code
that were hidden by never reusing memory came to life.
Some of these were detected in time by course staff grad-
ing assignment 2, but not all. These factors made life
rather unpleasant for all concerned. So we now provide
a fairly robust implementation of malloc and free as
part of the base system.

On the other hand, the project assignment worked quite
well; some of our students did quite elaborate projects,
while the less ambitious could pick things that were rel-
atively straightforward.

We chose MIPS as the simulated processor platform be-
cause we already had some experience with it from hav-
ing used Nachos in the past. Unfortunately, it turned
out that the various freely available compilers and com-
piler tools for MIPS were in a rather poor state. We had
some difficulty preparing a toolchain that would itself
compile on all the host platforms we wished to use, and
even then it turned out to have several annoying bugs.
There is some reason to hope that the situation may be
improving, but we are seriously contemplating moving
to a different processor architecture in the future.

In general, while we did make some poor design deci-
sions, described above, we believe that these have been
rectified. We also had a few problems arising from us-
ing a new and thus immature code base. A significant
amount of time has been invested in improving the ro-
bustness of the code, and on general polishing, and we
expect a much smoother experience this coming year.

7 Conclusions

In the introduction, we listed six design goals for
0S/161 and System/161. In our estimation, with one
exception, we have accomplished them. We created a
realistic execution environment that supported easy de-
bugging; we wrote an operating system that remains
sufficiently simple for instructional use, but reflects the
design and layout of real OSes; and we believe that the
code we have is cleanly written and well organized. We
did have several students go out of their way to tell us
that they liked the code.

Unfortunately, it is not yet the case that the fin-
ished OS/161 properly supports “real” user applica-
tions. This is, however, largely because 0S/161’s C
library is not yet sufficiently complete; this problem is
easily solved, and we hope to port over some of BSD
/usr/games before long.

We believe we have produced a useful system and in-
structional tool and hope others may find it useful for
themselves as well.

8 Availability

0S/161 and System/161 are freely redistributable under
a BSD-like license and are available for download from
ftp://ftp.eecs.harvard.edu/pub/os161.

References

[1] Christopher, W. A.; Procter, S. J., and Anderson,
T. E. The nachos instructional operating system. In
USENIX Winter (1993), pp. 481-488.

[2] Fankhauser, G., Conrad, C., Zitzler, E., and Plat-
tner, B. Topsy - a teachable operating sys-
tem, 2000. Online. Internet. September 7, 2001.
Available WWW: http://www.tik.ee.ethz.ch/
“topsy/Book/Topsy_1.1.pdf.

[3] Lawton, K. bochs: The open source ia-32 emulation
project (home page), 2001. Online. Internet. Avail-
able WWW: http://bochs.sourceforge.net/.

[4] Rosenblum, M., Herrod, S. A., Witchel, E., and
Gupta, A. Complete computer system simulation:
The SimOS approach. IEEFE parallel and distributed
technology: systems and applications 8, 4 (Winter
1995), 34-43.

[6] Tanenbaum, A. S., and Woodhull, A. S. Operating
Systems: Design and Implementation, second ed.
Prentice-Hall, Englewood Cliffs, NJ 07632, USA,
1997. Includes CD-ROM.

